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The equations of motion in fourth approximation for gravitational bodies are 
used to obtain orbital equations, first integrals, differential equations for the 
corresponding trajectories, and fourth-order contributions to the orbital motions 
in stationary weak gravitational fields. 

1. INTRODUCTION 

In Gambi et al., (1987) the fourth-order equations of motion for material 
bodies in slow motion and weak fields were obtained using Synge's method 
of approximation (Synge, 1970). The contributions of the 4-force in these 
equations are given in terms of six gravitational potentials and combinations 
of them, which, generated by the material system, characterize the state of 
energy, stress, and rotation of the gravitational model under consideration. 
These contributions appear split into four+five components (four for the 
equations of motion and five for the equation of continuity), so that each 
one corresponds to an increasing and single, up to the fourth order of 
approximation. 

The first two + three components have been studied extensively, using 
the equations of motion in third approximation (Hogan and McCrea, 1974; 
McCrea and O'Brien, 1978, O'Brien, 1979; Gambi, 1983, 1985; Gambi and 
San Miguel, 1986), and we have applied the fourth-order equations (Gambi 
et aL, 1987) to the study of the contributions of the remainder two +two to 
the orbital motions in static fields, so that only the two first characteristics, 
energy and stress, have been taken into account. 
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Continuing this previous work, the aim of this paper is to derive the 
contributions corresponding to the potentials of rotation and, to this end, 
we shall consider the gravitational potentials generated by a massive body 
rotating steadily around an axis of rotation. 

The plan of the paper is as follows: In Section 2 we obtain briefly, in 
parallel to the cited previous work, the equations of orbital motions in 
fourth approximation for stationary fields and then, to obtain first integrals 
of these equations in Section 3, suppose the generating body of the field 
has as axis of symmetry its axis of rotation. To obtain the equations for the 
trajectories we assume that the body has as a plane of symmetry the plane 
of its equator. Finally, using the canonical formulation, in Section 4 we 
obtain the fourth-order contributions corresponding to the mentioned 
potentials of rotation. 

2. T H E  O R B I T A L  E Q U A T I O N S  

For details of Synge's method the reader is referred to Synge (1970). 
The general equations of motion in fourth approximation are 

ab  K - 1 t ~ a b  __ T,b + 0 (1) ' ~ , b  - -  

where T ab is the energy tensor and ~ab is the truncated Einstein tensor 
3 

corresponding to this approximation. In general ~ab is defined by 
3 

~ab = Gab __ Lab (2) 
nl 

where Lab is the linear part of the Einstein tertsor G ab for the metric Yah 
rn 

corresponding to the ruth approximation. If we assume that the field is 
weak, that is, 

T ~r = O(k2), T a4= O(k'/2), T 44= O(k)  (3) 

where k is the basis of the approximation, we have 

d '~b = dab+ O(k  m+l) (4) 
m m - - 1  

so that t~ ab can be calculated using the metric corresponding to the (n - 1) 
m 

approximation. 
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In our case, the metric in second approximation is given by (Synge, 
1970) 

g . b  = 6 ab + T~b ( 5 )  
2 2 

where 

and 

where 

Y.~ = 2( V -  K~.r + V 2 ) 8 , ~  + 4 K ~  + E~t3 + O(k 3) 
2 

Y~4 = 4i(  W,. + F~) + O ( k  7/2) 
2 

")/44 = - -  2 (  V ~1_ K,~,~ - V 2 ) + O(  k 3) 
2 

(6) 

(7) 

(8) 

V = - R T  44= O ( k )  (9) 

W~ = - iRT '~4 = O( k 3/z) (10) 

Ks.  = R T  ~ = O(k 2) (I1) 

E,,~ = - ( 1 / ~ - ) R (  V,, V~ + 2  V L ~ )  = O(k 2) ( I 2 )  

F,, = - (  i/ 4r V,, V4+ 2i( V~, W~,,~- V,~ W~) 

+ 2i( W~ [] V -  V [] W~) ~ O(k 5/2) (13) 

C 
Rf(x,  t )= J f (x ' ,  t - l x - x ' l ) [ x - x ' t  -1 d3x '  

If the second term of (i) is written in the form 

= A.r T + B~[34 T X.  t~ r C~T44 + O ( k S )  

X4 = A4r T ar + Bacg T/34 q- C4 T 44 q- O(k  5 ) 
4 

(14) 

(15) 

(16) 

then, with the aid of the value for ~ b  (see McCrea, 1981), by a straight- 
3 

forward calculation and taking into account (2) we have (Gambi et  at.,  1987) 

A~.~ = ( -4  V -  4k~,~ - V 2 - 2 N ) ~ 6 t ~  ~, - ( V.~ - K,~.~. )6~v 

-�89162 + Er - (4Kr  + Er + O(K 3) (17) 
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B ~ / 3 4  = - -  4 V46.~ - 4K,.,-o- 4~.t3 - ( V2),4~1~ 

- -  2 N 4 ~ / z ~  - 4i(  W~,. - W.~t~) - 4K~B,4 

- 8 i V (  W~.,. - W~,,t3)- E , ~ t ~ . - 8 i W ~  Vt3 

+ 4i(F,~.,~ - F . ,~ )  + O ( K  7/2) (18) 

C .  = - V~, + 4 VI,(,~. - 4iW~,4 - 4 VK, . .~ .  

+4K~, V,~-8iVWg,4- i2 V2V.. 

+ E~a V a -4iWp V,4-4iF~, ~, - 4(W~);~  

"q-{R[--2"JT-1Wo. vWv, o.-'-213T-lv, o. Wo. 4 

- 4 T44K , . .  - 4 V T  ~176 - (27r)-1( V4)z 

- rr -1 Y~, .4  - rr -1 V K , ~ , ~  + 4T44 V 2 

- ( 4 r  . . . .  + ( 2 ~ ' )  -~ 2 , w , , ] } , , ~  + o(1,;3 (19) 

+ 8i( W~ V,r - VW~,r) - 4iVy, W,~6t3 r 

- 2Kt~, , ,  + �89 - K~.,./, ~ 4iF~,~, + 0 ( K 3 ) ,  (20) 

Ba~,~ = ( -  V ~ * 4K. .~  - 2 N  + VE~.~. + 8 W ~  - 4 VK~.~. + 8 V3) , ,  

+ 16  w , , (w ,~ , ,~  - wo,~)+siv~w~ 

- 7 r - ' { R [ 2 (  W~.,.)2+ V , ~ ( K  . . . .  - 2 K . ~ . . .  

�9 "4 1 
- 6 ~ W , ,  , - ~ E  . . . .  + ~ E  . . . .  ) 

+[-'] W(4go.o - 2 V~-~E,~o.)-l( V,4) 2 

- 6 Wo-,,. Wv, o- - 16 ' n 'T a4 ( Ko- o -  - V 2 )  

- V ( 4  V~,,~ +4K,~ . . . .  + E~. ..... 

+ 3 (  V~)z+  16rrT'~") ]},~ + O (  K 7/2) (21) 
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Ca = - V4+3K,~o - ,4 -2VV , ,4 -2N4+4iV .  W,~ 

+ 2 V2 V 4 -  32 W .  W.,4 + 4iV,,~F,~ + 4iW,~K,~.,~ 

+ (VE,~,~),4 + 2(VK,.~).4- 8 ivy,~ w,~ 

- i [ - 1 2 (  W2),, + 6( VK~),,- 6( V3),, 

+ ~r-'{R{2( Wo.,~)2-4W,~.~W~.o. 

- 1 2 ~ 3 " 4 ( / r  - v :) - v ~ ( - 4 i w ~ , ,  

3 1 + K . . . .  + 2K,~ , , , . - zE  . . . .  +~E,~,,~) 

+ V [ 1 2 ~ . T ~ _  3 3 V 4  4 - 3 K . . . . .  - ~E . . . . .  
7 "~ 

- ~ (  v ~ ) - ]  + 1 

- [ ]  V ( 4 K ~  - 2 V 2 -�89 + O( K 9/2) (22) 

with the potential N in the expressions (17), (18), (21), and (22) given by 

N = R ( p V )  = J( V E3 V) = O ( K  2) (23) 

Now, adopting the Eulerian formalism for the first term of (1), 

T '~t3 = pu,~ut3 - S,~r T ~ = ipu,~, T 44 = - p  < 0 (24) 

where p, S ~ ,  and u~ are the density, stress, and 3-velocity of  the material 
system, respectively, from (17)-(22) we have 

p ~  + u. (p + pO) - s.~,~ = p v~ + v .  + v'~ + O( K ~) (25) 

tS+pO= - p V , + Z ~ + Z 2 + O ( K  ~/2) (26) 
where 

(pu 2 -  S ~ )  V~, -4(pu~,u~ - S ~ )  V~ 

+ p n ~  ( - 2  V2 + K ~ )  + 4p W.. ,  (27) 

- (pu 2 - S ~ ) K ~ , ~  

+ (put3u ~, - S ~ ) [ ( 2 K ~  + �89 

- 2 ( 2 K ~  + �89 + 6.t3(4Ko_ o_ - V 2 - 2N),~] 

+ put3 [{8[( W~,. - Wu.r V + W. V t~ ] - 4(Fts,~ - F.,~) 

- 2(2K.;3 + �89 + 6.~(4K~,.  - V 2 - 2N),,} 

+ pD~. [4( W2+ V3) + ~/] - 4 p V ( K r  +2 W.,,)  

- p V ~ ( 4 K . , . +  E . , T ) + 4 p F . . , + 4 p W u  V, (28) 
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with 

Z 1 

_ 

- (pu 2 - S.,~) V,  - 4 W~,~,(pu~u~, - S~,)  

+ puaDa ( 4 K ~  - V 2 - 2 N )  

+pD,(3K~.,~ - N -  V 2) - 4 p V ~  W~ (29) 

-4(pu2-Sc .~ . ) (V , ,~Wc,+ V +  V,+IK~,~.,) 

+ 2(pu~u~, - S~r)[4( W e V r - VW~r,, 

- � 8 8  2F~,y] 

+pu~[16w,~(we.o- w.,e) +8 y,w~)] 

+ pu~D~( VE,~,~ + 8 W ~ - 4  VK,~o- + 8 V 3 -  ~ ) 

+ pD,  C~ + p VD,( IO VZ + E,~,~-4K,~o -) 

+pV,(E,~-4K~) 
-2p(2V, ,~F,~+4W,~W,~, ,+2W~K . . . .  - 4VV,~ W~) (30) 

= R [ - 2 ~ r - ' (  W~,~ W~,~) - 2 i7r - '  V~ W,~,4+4pK~ 

- 4 VT ~ - (27r)- '(V,4) 2 + "TJ'-- ' V,o.vKo v 

+ ( 4 ~ )  - 1 V ~ E ~  - ~ '  V V 4 4 -  ~ '  VK . . . . .  

- (4~- ) - '  VE . . . . .  + (27r ) - '  W2~ - 4 p V  2] (31) 

= 7 r - lR[2 (  W~,~)2 + V,~(K~,~ + 2K~.~.~ -6 iW~,4  

3 1 - a E  . . . .  + ~ E  . . . .  ) 

+[] V(4K,~o.-2V2-�89 - 5  l 2 w~,~ w~,~ -~(v4) 

+ 16p(K~,,~- V:)+ y ~ ( 2 K ~  +~E~) 

- V(4V,4,+ 4K,~ . . . .  + E ~  . . . .  + 3 ( V ~ ) 2 +  160rT ~ ]  (32) 

C = rr- 'R{2(W,~,~) 2 - 4  W,~,~ W~.~+ 1 2 p ~ ' ( K ~  - V 2) 

�9 3 1 . . . . .  + ~E . . . .  + Vo.-4tWo.a+K~,,,o-+2Ko.,~,-aE,,,~o. 

, , - a E ~  . . . .  -~ (V ,~ )  ] + V[_12orTO-O- 3 V 4 4 _ 3 K  . . . .  3 7 2 

+ [] V(4K,,,~ - 2 V 2 - �89 (33) 

F ina l ly ,  i f  we cons ide r  in (25) and  (26) the mo t ion  o f  two bod ies  with 
one o f  t hem very small  wi th  respect  to the  o ther  and  this last in s t eady  
mot ion ,  so tha t  all the po ten t ia l s  are t i m e - i n d e p e n d e n t ,  we can ignore  the 
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self-potentials and 
have 

li~ = 

stress in the small body, and then, from (25)-(33), we 

v~-4V.u~u~ + V~u~-4w~ 

+ K,~,~ -4Wt3,~,ut3 +4W~,~u~ 

2 1 
- K ~ , ~  u + 2Kt3v, ~ ut3u v + ~Et3v, ~ ut3u v 

+ 4 V,, W~u~ + 4 W~,vu~u~,u ~ 

- 4K~.~u~u~ - E~,vut3u v 

+ 8 VWt~,~u ~ - 8 VW~,~ - 4Ft3,~u ~ 

+ 4F~,~ u~ + 8 W~V,t~u ~ - 4 V K r 1 6 2  

- 4 K ~ V ~ + l Z V 2 V , ~ - E ~ , V , ~ ,  

+ 4( W2),~ + 2~r-~R ( Wr Wr 

+ 4 R  ( VT~162 - 4R(pK,~.) .~  

-- 7r- lR ( Vr - (4vr)-lR ( V,,.~E,..).~ 

+ ~r-l R (  V K  . . . . .  ),u 

+ (4vr)- 'R ( VE . . . . .  ).~ - (2~')-~R ( W2r 

q- 4R(pV2) ,~  q- O(K 4) (34) 

which are the orbital equations wanted. As can be seen, they are obtained 
as a particular case of the general equations obtained in Gambi et aL (1987) 
and contain the ones used there to derive the cited contributions in static 
weak fields [equations (110), (111), and (164), respectively, of G a m b i e t  al. 
(1987)]. On the other hand, from direct inspection it can be seen that 
the 4-force on the small body is determined by the potentials V, 
W~, K ~ ,  E ~ ,  F . ,  and N [defined in (9)-(13) and (23), respectively] gener- 
ated by the massive body. From (3) it is clear that they are O ( k ) ,  O(k3/Z), 
O(k2), O(k2), O(kS/2), and O(k2) ,  respectively; furthermore, as the field 
is stationary in this case, they are all instantaneous. 

Among the diverse models of stationary weak fields there are two of 
interest. On one hand there are the gravitational fields generated by con- 
tinuum bodies at rest, and on the other hand we have the fields generated 
by continuum bodies in steady motion, which obviously are more general 
because the first are not only stationary, but also static. From these last 
ones the most interesting case corresponds to that in which there is an axis 
of symmetry around which the body is rotating steadily. Now, as the 
potentials (9)-(13) and (23) which determine the motion of the material 
system by means of the general equations (25)-(26) also determine the 
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gravitational field generated by the system, we can obtain the form of the 
field when this system is constituted by the two bodies described previously, 
in such a way that their motion is governed by equations (34), so that the 
field for the case in which the massive body has an axis of symmetry appears 
as a particular case. In fact, in accord with Synge's method (Synge, 1970), 
if the system moves according to equations (25)-(26), then we have for this 
approximation 

* - - 2 J ( K T " "  + d "~) (35) 3`/zv - -  
3 2 

* -- - 2 J ( K T ~ 4 +  d ~4) (36) 3`/x4 - -  
3 2 

3'4*4 = -2 J (KT  44+ 6 44) (37) 
3 2 

where 

3`a#b = 1 3`ok --~6ab3`cc and J = -(4"n')- le  
3 3 3 

Now, eliminating in G ab all the terms of O(k3), 0 ( k 7 / 2 ) ,  and O(k 3) 
3 

in G"~, ~ .4 ,  and ~44, respectively, we have after a straightforward and 
3 3 3 

tedious calculation 

y.~ = 2( V -  K,~, . )6~ + 4K~.~ 
3 

+ ~--'R [ - (  V,. V,,) - 6~(V~) 2 -2(VV,.~) - ~.,,( V [] V) 

- ( V ~ K  . . . .  + V~K,~,~,~) + 23~( V~K . . . .  ) 

+ V r 1 6 2 1 6 2 1 6 2  +4( Wr Wr 

+4(W~,o-W~,,o.)+2iW4(W~,~,+ W,,,,~)-i(V4Wo-,o-) 

- W , ~ W , ~ , ~ ) - ~ 6 ~ . ( V K  . . . . .  ) 28.,.( V V , 4 4  ) + 8 (  3 

+ �89 ( V ~  K ~ )  -26. , , (  V ~  K ~ ) +  4( V DK.~) 

+ 2i( V~4 W~ + V~4 W~) - 2 ( K ~  [] V) +~6~(  V [] K ~ )  

+ 2 V(K,~u,,.o. + Ko-,,~o- - K .  . . . . .  - K,.,~.~) 

+ 2(V,.~K~ + V~K, .~-  V,.~K~) - 2a,~ V( V .Y  

-2iV(W~,,,4+ Wu,~4)-4 Wo-( Wt~,vo-"b W,,,o-~) 

+4( w~ [] w~ + w~ [] W.) + ~ (  K ~  [] V)+2( vy .  yo) 
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- 4( V 2 V,~) - ( V~, E~, ~,) - �88 V~ E . . . .  + V~ E,~,~,~ ) 

+ �89 G(G ,o + - ,Ld 
, , V.~.E~.~)+~(V~,~E~) ~ ( E ~ V )  

~V(E,~ . . . .  + E . . . .  . - E~,,~) 

- 43.~(W,~W~..,~,~) - 2 8 . ~  V(K~ . . . .  ) + 48.~(Wo.W,~,~,~) 

- ~ V ( 2 E  . . . . .  - E  . . . . .  ) 8 , ~ - 6 . ~ ( V 2 [ ] V ) ] + O ( K  ") (38) 

T .4=4 iW~-3~-~ (VuV4)  
3 

+ ~--~R[2i( V~ W,.~ - W,V.~) + 2i( W, ~ V -  V [] W.) 

+4i(  W~ V44- VW,.4a)+ (K,, .~ V.4+ K,,.aV..~) 

+2i(  Wu [ ]K, ,  7 + 3 K . .  +3K.~ [] W. )  - 4 i  [](K,~.W.) 

+ 4iK,~ W,.~.~ - 2 i (K , ,  Wr162 - 2( vg,~),n4 

+ 4i(K~, We - W,K,r162 + 2( W, W,)..~4 + 4( W. W,.4).. 

3 (  V,,p/../,4.~_ V,4..~ V4H~.) _1( W,~ ~ H -  H [] W~.) 

-�89 i( W..,fl-/m - / - / . 0  W,) + �89 [] V - V ~ n . )  

+ �89 V m - V~..O.)+ 4iVV,,n(W~.,.- W,.~) 

+8iV( V[]  W, - W~ FN V) +2iV, (2  V,  IV, - 3 V ,  W~) 

+ 8( VV., V,,4+ i VV,,~, W,)] + O(K 9/2) (39) 

"y44 = 2 V -  2Ko.~ + 2 V2-  8 W 2 - 4  vS + 4 VKo_o_ 
3 

+ ~- tR[2(  V[,~ Ko-,.) - 4( W~.,. W,. o-) - 4i( Vo- W,~,4) 

+ 8 ~r (pK,~,._) - 8rr( VT ~'~ - ( 2 V,) +~( y,,~E,.p) 

- 2( VV44 ) - -  2( VK . . . . .  ) -�89 VE . . . . .  ) + ( W 2 r  

- 8~(pVZ)]  + O ( K  4) (40)  

where 

H = 4V2+ (2~r)-lR( V~ V,~) (41) 

~ .  = 3i~-t R(  V,. Va) 

+2r  (42) 



116 Gambi, San Miguel, and Vicente 

and therefore the field is given by 

gob = ~,~b + Y~b (43) 
3 

so that the field equations are satisfied with an error O(kS) .  Obviously the 
metric (43) is simpler if the field is stationary, because all the terms in 
(38)-(40) are independent of  x4 in this case. If, in particular, the field is 
generated by a body with an axis of symmetry about which it is rotating, 
we have even another simplification, because assuming the axis o f  symmetry 
is the axis Ox3 (which obviously is not an essential restriction), the following 
conditions are satisfied in this case: 

p = p ( r ,  x3), S . . = S u . ( r ,  x 3 ) = O ( K  2) 

U U 
ul = - - x 2 ,  u2 = - X l ,  u3 = O, u4 = i, u = u(r,  Xa) (44) 

?" r 

where u 2= u~+ u 2 and r 2= r~+ r~. In the next section we shall obtain first 
integrals of  equations (34), but, since for the integral of energy we only 
need the field to be stationary, we shall use (43) taking into account only 
the fact that all the components are independent of x4. The integral of 
angular momentum requires that the field have an axis of symmetry, and 
so, to obtain it, we shall use the conditions (44). 

3. FIRST INTEGRALS AND TRAJECTORIES 

To obtain first integrals of equations (34) let us first consider the field 
components (38)-(40) when the field is stationary. In general the Lagrangian 
L of a test particle is given by 

L = ( - g , ~ 2 ~ 2 ~  - 2ig~42 ~ - g44) !/2 (45) 

so that for its motion we have the equation: 

d OL OL 
- -  --- 0 ( 4 6 )  

dt 05c~ Ox. 

or, equivalently, 

tx �9 4 ~ . 5i~ + F m.x .  = Axe,  F m.xmxn = iA (47) 

where A is a Lagrange multiplier, 2~, = u.  = O ( K  t/2) as before, and Fh... are 
the Christoffel symbols of  the second kind for the metric gob- 

As the first three equations are equivalent to 

t i  n + F 2 t  3 u , ~ u t 3  + 2 i F 2 4 u , ~  - F~4 = A u u  (48) 
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then, if the field is stationary,  we have 

F~r = �89 - g~,3,~,) -t- lgu4(g~< 0 + gt~4,~) 

+~ g4<~ (49) 

= - gg g44, 

so that, carrying (49) to (48), we have 

+ ! . ~ . 4 ( .  
28 t,,So~4,t~ + gfi4,a)Uo~Up 

- 1 t * o -  
+ 2 1 "  yg (g4m~ -- g4,~,o-) 

.qL --1 ~ / x 4  ~ , _.t._ 1 ~/.*-c~ ~ 
2~'~ ~ 4 4 , ~ " c r  t ~ N  g44,o-  = ~ L / ~  ( 5 0 )  

Now, if we suppose that the metric is (43), then, f rom (49), we have 

1 1 + 1  
fi/x qL 2 y 4 4 . ~  - -  _5'yep. 'Y44.e 5"yU.o- 'yo-n 'Y44, n 

3 3 3 3 3 3 

3 3 3 3 3 

- Y , .~  y , . ~ . ~  - y , .~ .  y ~ , . ~ )  u , .  u e 
3 3 3 3 

+ i(~/,~,,~ - ")le,4," - -  Y ,  cr~14cr,, 
3 3 3 3 

- -  "}/p-4'Y44,cr "}- ' Y / z e ' Y ~ 4 , e )  Uc~ = ~ U ~ ,  (51) 
3 3 3 3 

so that, going back to the four th  equat ion (47), we have 

F 4 / 3  1 4e =~g (g,~,~+&3~,~-g,~,~) 
~_ 1 4 4 /  

_5g ~ g,,a,~ + g4~,,~) 

F44 1 4~/ ..~L l 44 
=Tg tg4~,~-g4.,~) gg g44.~ 

- - - ~ g  g44,~ (52) 

and so 

1 4or /  
5g ~g~.~+g~ .... - g ~ , ~ )  

1 44 
+~g (ga,~,~+g4~,~)u~u~ 

+ 2 i ' '  4= +1 44 5g (g4o-,~--g4~,~,) 5g g44,~u~ 
1 40- 

q-  2 g  g44,o- = iA (53) 



118 Gambi, San Miguel, and Vicente 

so that 

{(--3/4G)(3/o:o-. /3 4- 3//3cr, o' - -  3/a/3 G) 
3 3 3 3 

4 - 1 (  1 - -  3/44)(3/4~,/3 4- 3/4/3,~) UoeU/3 
3 3 3 

+ 2 i  - - " 1 (  - -  ~//4G) ( "~4G.er 3/4cx,o-) 4 - 1 (  ] 'y44 ) '~/44. ot ~/~ 
3 3 3 3 3 

1 
4- 2 ( - -  T4~)( ' ) /44 ,0- )  = iA 

3 3 
(54) 

with which ,  from (51) and (54), we  have  

3 3 3 3 3 3 3 3 3 

- -  1(  3/4" 3/4oq~ 4- 3 / 4 .  'Y4,8,G ) UaUl3 
3 3 3 3 

4- i(y4.,~_ - -  3/4~,/z - -  "Y~G'Y4o-,o" 4- 'YCzG~I4oqo - - -  3//x4 3/44,cz) Uo~" 
3 3 3 3 3 3 3 3 

1 4,G) 
4- ~( 3/44,~ - -  3/~o-3/ 

3 3 3 

= "~44./3 U l 3 U ,  - -  3/44 T44.ce U o ~ U ,  - -  iy~4,t3 U,~Uc~U~ 
3 3 3 3 

1 ,  o ( g  4) (55) -~- 213/4o- 3/44,o- U/z -~- 
3 3 

From these equat ions  it can be seen that i f  (43) is substituted in (55), 
having e l iminated  in (38 ) - (40 )  all the terms that are taken as derivatives 
with respect  to x4, then we obtain equat ions  (34). Thus,  it is clear that if  
the field (43) is stationary,  we  have  

L -  ~. OL/02 = I + E  (56) 

or, which  is the same,  

L - l ( - g . 4 2 ~  + g 4 4 )  - 1 = E (57)  

where L is the Lagrangian assoc iated with the metric (43), 

L = 1 - ( u 2 +  y . , . u . u v  + 2 i % , 4 u ~  - ')/44)1/2 ( 5 8 )  
3 3 3 
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Now, since from (58) we have 

L - '  = 1 +�89 3".~u~u,, + 2i3"~4u~ - 3 '44)  
3 3 3 

+3(u~ + 2 2 3 '44- t -  2u %.~u.u~ + 4iu23"~4u~ - 2/./2"}'44 
3 3 3 3 

- -  2 3 '443 ' txu U~zUu - -  4 i3'~4"Y44u~, ) 
3 3 3 3 

+5(,6--3U43'44+3U2T244--3'34)+ O ( K  4) 
3 3 3 

(59) 

then from (57) and (59) we have 

-= L - l ( - i g t z 4 S c ~  -~" 1 4 4 )  - 1 

= [{[ 1 + �89 + Y ~  u~u~ + 2iy~4u, - 3'44) 
3 3 3 

_~_ 3(  U4 _t_ 3 '14  _~_ 2 2 2 2u Y44+2u 3"~u,,+4iuZ3"g.4u~-2u23"4a 
3 3 3 3 3 

-- 2 3'443'~*~ U~,U,, -- 4i3"~,4 3"44U~, ) 
3 3 3 3 

. 1 5 ( / , / 6 _ _ 3 u 4 y 4 4 . q  ~ 2 2 3 ",a 
2)/1 3 '44- -  3'44)J 

3 3 3 

X [ 1  - -  3 ' 4 4 -  i'y.4U. ]} - -  1 q- 0(14) 
3 3 

(60) 

so that from (38)-(40) we finally have 

E =�89 2 -  V-K,~ ,~+3E2+5V2+6EV+2EKo-~+6VKo.o-  

- 9  VE 2 -  1 8 E V  2 - 2 E  3 - 14V 3 - 4 W  2 -  8 W.u,~(E + V) 

+ �89 + E,~)u,u~ + .~ + O ( 1  4)  

where 

(61) 

~l = - 2 ~  -~ R(  W,..v W~.~) + 4R(pK,~,~) - 4R( V T ~'~) 

+ 7r-' R ( V , ~ K ~ ) +  ( 4 ~ - ) ~ R ( V ~ E , . . )  

- 7 r - ~ R ( V K ~ , ~ )  - ( 4 ~ - ) - '  R (  VE ...... ) 

+ (27r ) - ' n  (W~,~) - 4 n ( p  V 2)  (62) 

Equation (61) is the integral of  energy of equations (34) when the field (43) 
is stationary. It has been obtained with an error O ( K  4) and contains the 
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integral of  energy both in the lower approximations and in the static case 
(Gambi,  1985; Gambi  et al., 1987). 

To obtain the integral of  angular momentum,  we have to add the 
hypothesis (44). I f  0x3 is the axis of  symmetry, we have 

OL OL 
= - a  (63) xl ~ 2  - x2 0~1 

or, which is the same, 

L-'[x,g2~.-~ - x2gl~.x~. + i(x1924 - x2g,4)] = A (64) 

Now, taking into account (51), we have 

L-'  = l q-�89 u2 4- 2u2 V -  8 Wt.u~ - 2 V + 2Kr162 - 2 V 2) 

+~(u4+4vZ+4u2V) + O ( K  3) (65) 

and 

xlg2~,YC~ -- x2gl~,YCt, 4. i(xlg2~ -- x2g14 ) 

= (1 + 2 V - 2 K ~ + 2 v Z ) ( x 2 u 2 - x 2 u l )  

+ 4 ( x l  K2.~ut. - x2Kl~u~  ) 4. ( x l E 2 ~ u ,  - x2EI**u~. ) 

+4(x2 W~ - x, W2) 4- 4(x2F~ - x,F2) + O(K 7/2) (66) 

so that, f rom (64)-(66), we have 

1 2 7 2 3 4 A=(14-3V4-9V2-Kr  +iu V - 4 W ,  u,, +~u )X(XlUR--X2Ul) 

+(4+4V+ 2ua)(x=W1 - x l  W2) 

+ 4 (x l  K2~u~. - xzK1 t, up. ) -k- (x  1E2~u ~ - XzE lt.ut. ) 

+ 4(X2Fl - XlF2) + O(K 7/2) (67) 

I f  the field is stationary, then, using (38)-(44), we have from (67) 

A = ( I + 3 V + 9 V  2-K~r189 TuzV 

- 4 W . u .  + ~u4)(Xl u2 - x = u , )  

+ (4 + 4 V + 2 u 2 ) ( X 2 U l  - x 1U2) q- R ~ U  

+ 4(x2 F, - x2F, ) + O ( K  7/2) (68) 

where xI*~---~l(r 2, x3) is the antisymmetric function of the general des- 
composit ion 

~/j = KJ:t'I ~/j 4. a/~-t/j(r 2, X3)XiXj, (i,j = 1, 2) 
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for the tensor 5;~ = 4K~+E,j. But, since from (61) we have 

u 2 = 2 ( E +  V ) + 2 K ~ - I O V 2 - 3 E 2 - 1 2 V E + O ( K  3) (69) 

then from (68) we have, using cylindrical coordinates, 

A = (1 + 4 V + E + 8 V 2 + 4 E V - 4 W . u . + ~ I ) R 2 d 9  

+ 4(1 + E + 2 V) (x2 WI - x~ W2) 

+ 4(x2F~ - x~ F2) + O(K 7/2) (70) 

so that, setting h = A - A E ,  we finally have 

h = (1 + 4 V +  8 V 2 -  E 2 -4W~u1-4Wzu2+~)R2d9  

+ 4 ( I + 2 V ) ( x 2 W ~ - x ,  W z ) + 4 ( X z E 1 - X y z ) + O ( K  7/2) (71) 

which is the desired integral of angular momentum. As the integral of 
energy, it corresponds to the fourth approximation, that is, it has been 
obtained with an e r r o r  O(K 7/2) and also contains both those for the lower 
approximations and for the static case (Gambi, 1985; Gambi et al., 1987). 

Now, if the massive body has an equatorial plane of symmetry, then, 
putting ~:= 1/r and using polar coordinates in this plane, from (61) and 
(71) we have 

\r ] ~5 \ dt / 

= 2(E + V ) -  1 0 V 2 + 2 K ~ -  12EV+28V3+ 18E2V 

- 12 V K ~  + 36EV 2 - 4 E K ~  - 3 E 2 + 4E 3 - 2(E + V)~I 

"~- 8 W~-{- 16(E q- V)(WlUl--~ W2u2)-~-~O(K 4) (72) 

d ~  
= ~2[{h[1-4V+ 8 V2+ E2+4( W~u~ + W2u2) - ~ 1 ]  

dt 

+4(x~We-x2W1) (1 -2V)+4(x~F2-x2G)+O(K7/2 ) } ]  (73) 

and from (72) and (73) we have 

(d~-)2 = - F ( , )  (74) 
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where 

F(~:) = ~ c2-  h-212(E + V ) + 6 V 2 + 2 K o . o . + 4 E V - 3 E  2 -  12V3+ 12VKo.~ 

+ IOOEV2+2(E+ V ) ~ I - 6 E 2 V + 4 E  3 

- 16h- l (E + V)(x~ W2 - x2 W1) + 8 W 2 

+ 24h-lE2(xl  W 2 - x 2 W 1 ) - 2 4 h  1Ko.o.(Xl W2-x2W1)  

- 2 0 8 h - '  V( E + V)(x,  W2 - x2 W~) 

+96h-2(E  + V)(xl  W2 -x zW~)  2 

- 16h - ' ( E  + V)(x,F2 - x2F~) - 2 ]  + O (K  3) (75) 

so that (74) is the equation for the trajectories on the equatorial plane for 
the stationary case. It contains those corresponding to the static case because 
the new potentials W~, W2, F1, and F2, which are associated with the 
rotation of the massive body, appear in this case. The contributions of the 
other potentials were already derived (Gambi et al., 1987) and now are 
going to derive the corresponding potentials associated with the rotation. 
First, let us see the way these potentials work in the former approximation. 
Then, dropping from (74) all the terms that are O(K2), we have 

( d~'~ 2+s  c2= h-212(E + V ) + 2 P - 2 Q + 6 V 2 + 4 E V  - 3 E  2] 
ddg / 

- h  3[16(E + V)(x~ W 2 - x 2 W 1 ) ] O ( K  2) (76) 

where 

C 
p =  l / -P - 

2 K J S o - c r  = - S o - o . ( X  )l X - - ~ / I  1 d4)~ ( 7 7 )  

O = �89162162 = - f  pu=u~lX- x-'l-', d3X' (78) 

Since far from the massive body we have 

V =  m~, P =p~, Q = q(, (x, W 2 - x 2 W , )  = �89 (79) 

where 

m = O ( K ) ,  p = O(K2), q = O(K2), J3= O(K3/2) (80) 

with J3 the x3 component of the angular momentum of the body, then from 
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(76) we have 

( d ( ] 2 +  ~2= h-2(2rn~+2p~+6rn2~2+4mE~+2E _3E2) 
d ' ~ /  

-h -~(S  EJ3~ + SmJ3~2) + O( K 2) (81) 

that is to say, after derivation, 

d2( ~- ( ( 1 - 6 m 2 h - ~ +  8mJ3h -3 
d ~  2 

= h-2(m +p - q + 2mE -4h-~EJ3)  + O(K 2) (82) 

so that the integral of (82) is 

m +p - q + 2 m E  -4h-~EJ3 

( =  h2( l_6mah-2  +8mJ3h-3 ) 

X [ l + ( 1  (2E-3E2)h2(1-6m2h-2+SmJ3h-3) '~ l /21  
GTp GG- z  j j 

x cos[q~ (1 - 6rneh-e + 8 rnJ3h-3) 1/2] (83) 

As can be seen from this solution, the terms m and h e appear 
supplemented by p, q, 2mE, 4h-lEJ3,  and 6m e, 8mJ3h -1 in the first factor, 
and the terms 2Eh2/m 2 and cos �9 are supplemented by 

( . . . .  3E2)h2( . . . .  6rn2h 2 + 8mJ3h -3) 

(. �9 . + p - q + 2mE - 4 h - l E J 3 )  2 

and 

cos cI0( . . . .  6rneh -2 + 8 mJ3h-3) 1/2 

respectively. Also it may be observed that the relations between the 
relativistic terms are maintained as in the classical equations. In fact, 
equations (83) correspond to a quasiconic whose semi-latus rectum 1 is 
given by 

l -  

and whose eccentricity is 

h 2(1 _ 6m2h- 2 + 8mJBh- ~) 

m + p -  q + 2 m E - 4 h - ~ E J 3  
(84) 

. i / 2E_3E2)h2( l_6rn2h2+SmJ~h-3 \ , /2  
e = l •  . . . . . . . . .  ~ ! (85) 

\ ( r n + p - q + 2 m E - 4 h -  EJ3) l 

Since this eccentricity is greater, equal to, or less than one if the terms 
between parentheses in (85) are greater, equal to, or less than zero, 
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respectively, it is clear that this fact only depends on the value taken by 
the factor E - 3 / 2 E  2, which is the total energy of the particle, because if 
we taken into account that 

E ( l u 2 - V )  K~,~+3 4 3 a 3 2 1 2 = -- gU +gU q-~U V + 5 V  + O ( K  3) (86) 

then, from (61) we have 

E ~ . ~  ~ 3E2 �89 V - V Z - K , ~ r  (87) 

for this approximation.  Therefore, the trajectories are of  elliptic, parabolic, 
or hyperbolic type if E - ~ E  2 is less than, equal to, or greater than zero, 
respectively, and so the higher order corrections do not modify essentially 
this classification. 

4. C O N T R I B U T I O N S  D U E  TO R O T A T I O N  

Since, in accord with (58), in the stationary gravitational models we 
are considering the Lagrangian is given by 

L = - [1  - ( 2 V +  u z) + (2V 2 - 2 Vu2 + 8 W~u~ - 2 K ~ )  

+ ( - 4  V 3 - 2 VZu 2 + 4 VK~,, + 2K,~u 2 - 8 W 2 

-- ~t~vUt,~Up -~ 8 F .  blt~ -}- 2 , ~ )  "J- O ( K 4 ) ]  1/2 ( 8 8 )  

then for this approximation we have 
2 V 2 u 4 

L = -1  + v + W - - - + 3 V u 2 - 4 W ~ u ~  + Kr 
2 2 8 

3 . .3 -9 . . z  2 K,~,~V_IKr 2 5 V W ~ u . + 4 W  2 ~ v  " - t - g v  U - -  

6 

~ U ~ U ~  
1 7 4 4 F~u~ q- + g Vu  - 2 u  2 - - , ~  + ~6 (89) 

SO that for the generalized momentum P~ we have 

p~ = u~ +3  Vu,~ - 4  W~ -~ lu2uoe -~-9V2uoe - K,~r 

- 4 V W ~  + E ~ u ~  '~ 7Vu2uot -4W~uuu~ -2u2W~ 

- 4 F ~  + 3u4u~ (90) 

and for the Hamiltonian H we have 

U 2 
H = 1 + - - -  V-{-IV2-Kcro.+3Vu 2 - 5/~ro-ul" 2 - -  9 V2u2-1-~  

2 

] . , 2 - 3  4 -  VK,~+2~Vu4 ~V 3 + s E  ~ u ~  u,~ - 4 w ,~ • ~ u • - -  

- 4 u  2 W~u~, + 5  u6 (91) + 
16 
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But, taking into account that 

uo.=p,_3Vp~,+4W,_�89 9 2 5 2 +~V p,~+~Vp p~-8VW,~ 

+K~,~p~+3p4p,~-4p2W,~+4W.p.p~-Z.,~p.+4F= (92) 

then, from (91) and (92), we finally have 

H = I + - - f - V - 3 v p a + 4 w ~ p ~  - + � 8 9  

9 T , 2  2 - - 5  av  p -egVp4-8VW,~p,~+�89 2 1 

2 1 +4F,~p~+4W~+-~p6+VKr  (93) 

so that the Hami l ton-Jacobi  equation, which in this case is 

H(x~., OS/Ox,.) = E (94) 

has the following form: 

E =�89 V ( l + 3 V + 6 V 2  2K~,o_16EV_2E 2) 

- K ~ + 4  2 ~ 1 We + d -~X..p.p~ 

+4[(1 - ~)  W~ + F~]p~ + O ( K  4) (95) 

as can be seen if (93) and the fact that 

�89 V+3V2+4EV+�89  + K ~ + 4 W ~ p ~ + O ( K  3) (96) 

are taken into account. 
Now, let us suppose that the field is generated by a massive body in 

steady rotation as described before and that the particle is in the plane of 

its equator. Since in spherical coordinates 

OS 1 OS 
P~ - Or' P* - r 009' Po = 0 (97) 

and since the only nonnull components of  Z.~p.p~ in (95) are 

Z1 lPlP~ + 2~,12PlP2 + Z22P2P2 (98) 

with p~ = cos qb p ~ - s i n  �9 p .  and P2 = sin qb p4+cos  qb p . ,  then if we take 
into account that 

s = ~1 + ~2 r2 cos 2~, Z22 = ~s~ + ~2r  2 sin2~ 
(99) 

s "~- Z21 = �89 r2 sin 2dp 
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we have 

+ xIt2r )prq-aIdlpcl, (100) 

On the other hand, since far from the massive body we have (79), then 

W~ = W~ cos �9 sin 0 + W2 sin �9 sin 0 + W3 cos 0 = 0 

1 
W. = -W1 sin qb+ W2 cos �9 = ~r3 J3 

W o = - W l C O S d P c o s O - W 2 s i n d P c o s O + W 3 s i n O = O  (101) 
and 

G =s(L)-  

where 

f 1 
J fu(~') d3X'+ O(r -2 log r) (102) 

41rr co 

~ "}- O( r -2 log r) (102') 
4~rr 

L =(2=) '[(v. w~,.- v .~w~)+(w .av -  vaw.)] 
and Fr = Fr, F .  = 0, and F8 = 0, so that, taking into account (97), (100), and 
(101), from (95) we finally have 

lr(0So~2+1{0So'~2 ] 
E=2k\-~-r/ -F\--O~] J - v ( l + 3 V + 6 V 2 - z K ~ - 1 6 E V - z E 2 )  

_ K , . ~ + e w ~  + 2 ~  + e w . ( 1  _11 V'] I (OSo'~ 
2 / rkorb/ 

+4Fr\--~rJ+(aI2~l+r2glr2)\Or/ -~ t \ - ~ ]  + O ( K  4) (103) 

where So = S + Et. 
Now, writing So in the form 

So(r, ~)  = St(r) + S.(O) (104) 

and taking into account that �9 is a cyclic variable, we have 

OSo/OdP =- p .  ~ h (105) 

so that (103) is equivalent to 

( h 3 
1 2 _ V ( I + 3 V + 6 V 2 _ 2 K o . , _ 1 6 E V _ 2 E  2) E=5 pr+ 7 

+ (q~ + r2"I~2)P 2 + 4  h 2 ~  + O(K4) (106) 
1" 
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But, since in the lowest approximation we have Pr = [2(E + V) -  h 2 / r  2] i/2, 
then from (106) we have 

Pr = [2E(1 -xI*l - r 2 X 1 2 ' 2 )  +2V(I +3 V + 6 V  2 -2K~o- - 16EV-2E 2 
1,,.  

-*~-rZ*2)+ 2 K ~ - S W 2 - 4 ~ - S W .  1--~ V ---fi 

-8F,. [2(E + V)--~2J ~/2 h2-1 - (1 - 2rZ*2) 7 J  (107) 

so that, finally, 

r h 2 11 V Sr = 2E(1-q*~-r2~z)-(1-2r2*2)-~-8W~, 1 - ~  --~ 

+2V(1 +3 V + 6 V2- 2K~ - 16EV- 2E2- ~ - r2~2) + 2 K ~  

- 8  W~,- 4sg-  8F~{ [2(E + V)-~2]'/2} 1/2 dr (108) 

and 

OS [" 
L J A2(1 - ~ 1 -  r2Xlzr2) - 16 V 2 -  4EV t +'r =~-~= P~ 

-4Fr[2(E + V ) - ~ I  1/2) dr (109) 

OP+a=--0---~= (1--2r2X12'2) +SW.  1 - T V  r- 5 

- 4 F ~  [2(E + V)-~]~/2} dr (110) 

As can be seen in (108), the rotation manifests itself through the terms 
W. 2 -8W.(1-~V)h/r ,  8W 2, -8Fr[2(E + V)-hZ/r2] 1/2, and 8 ~ r - l R ( r  

which is in ar In order to obtain their contributions, we write (110) in the 
form 

_ 0 2 ( E + V + S V ) - T g  dr (111) ~+ o~ = Oh 

where 

6 V  -~- 6 v ( s t a t )  q "- 6 v ( r ~  q - 6 V  (r~ (112) 
3 2 3 
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so that 6 V  (stat~ contains all the terms in (107) already considered in the 
3 

static case and 6V (r~ and 8V ~r~ contain the terms associated with the 
2 3 

rotation of second and third order, respectively. Then, developing (112), 
we have 

2(E+v+av) -  7 = 2 (E+v) -TJ  +yaVLZ( +v)- 7 
1 [ h 2-] -3 /2  

-g(av) 2 ~.2(~+ v) - -F j  -Jr o[(~v) 3] (113) 

Now, since for an orbit of elliptic type with apsidal distances at r~ and 
r2 we have the advance 

AO=-2~-~ r, 2(E+V+6V)-r2.] dr (114) 

then, writing gqb in the form A ( ]  )(star) -{- A ( ~  (r~ and taking into account (112) 
and (113), from (114) we have 

0(lfo io - - - -  r2 t3v(r~ 1 r26V  (r~ d ~  
A ( I ) ( r ~  Oh -s 2 h 3 

1 I0 ) r4(~V(r~ + V ) r Z - h 2 ]  - '  d *  +O[(6V)  3] (115) 

The advance Aq ~(r~ is known. In fact, taking into account (101), we 
2 . 

have 
V (rot) = 4 hJ3/r 3 ( 1 1 6 )  
2 

so that 

A~ (r~ = -- ~h (1 fo r4-~- 5-2hJ3ddp) (117) 

But, since in first approximation I=  a ( 1 -  e2), then we have 

A ~  (rot) = 8 7 r J  3 h 8 ~'J3 m 
2 a 2 ( 1 - e 2 ) 2 - a 3 / 2 ( 1 - e 2 )  3/2 (118) 

which corresponds to an an angular velocity of precession of the orbit given 
by 

4J3 m3/2 
D-- a3/~(1--e2) 3/2 (119) 

that is, the corresponding one to the Lense-Thirring effect of rotation. 
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The perturbation t~V (r~ is given by 
3 

6 v ( r ~  r ~ Wv'~176 d3ff 

but because when r ~ o c  the integrand in (119) falls like [2, then we have 

2 fo ~ W"'rWv'cr d 3 x ' = 2  f~  W~=W~dy~'+O(r-210gr) 
Ix-x'l -n'r ' ' 

2~ 
=- - - +  O( r -2 log r) (121) 

,wr  

so that, taking into account (101) and (102), we have 

mJ3h j32+4~V" 
3 - -  - - -  8 -~ (2Er 2 + 2mr - h 2) 1/2 6v~r~ - 2  r 4 2r (122) 

and, therefore, carrying (121) to (115), we have 

3 h 2 2 7r 
. ( i ) ( r o t  ) 0 /22m -/3 -2J3m f 
A3 = - ~ l  hS L (1 + e  c ~  d *  

4 ~ ~ f o ~ [  h4 + - - - - ~  m ( l + e c ~  2Era - 5 ( l + e c ~  

+2h2( l+ecos~) - l / 2h  2 d ~  (123) 

from which, taking into account (118), we finally have 

A~ ~~ - 8J3m 4 ~" (1 - e 2) -1/2 _ 16 ~-e 
a3/2(1 - e2) 3/2 m (1 + e~) 2 

+7.r(l+e_~2)[ 88mi/2J3 10J32 1 
Lt a-6 mt a(1- e2)13 3 

which is the value for the tQtal advance. 

(124) 
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