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Fourth-Order Orbital Equations in Stationary Weak
Gravitational Fields

J. M. Gambi,' A. San Miguel,” and F. Vicente’
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The equations of motion in fourth approximation for gravitational bodies are
used to obtain orbital equations, first integrals, differential equations for the
corresponding trajectories, and fourth-order contributions to the orbital motions
in stationary weak gravitational fields.

1. INTRODUCTION

In Gambi et al., (1987) the fourth-order equations of motion for material
bodies in slow motion and weak fields were obtained using Synge’s method
of approximation (Synge, 1970). The contributions of the 4-force in these
equations are given in terms of six gravitational potentials and combinations
of them, which, generated by the material system, characterize the state of
energy, stress, and rotation of the gravitational model under consideration.
These contributions appear split into four+five components (four for the
equations of motion and five for the equation of continuity), so that each
one corresponds to an increasing and single, up to the fourth order of
approximation.

The first two+three components have been studied extensively, using
the equations of motion in third approximation (Hogan and McCrea, 1974;
McCrea and O’Brien, 1978, O’Brien, 1979; Gambi, 1983, 1985; Gambi and
San Miguel, 1986), and we have applied the fourth-order equations {(Gambi
et al., 1987) to the study of the contributions of the remainder two +two to
the orbital motions in static fields, so that only the two first characteristics,
energy and stress, have been taken into account.
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Continuing this previous work, the aim of this paper is to derive the
contributions corresponding to the potentials of rotation and, to this end,
we shall consider the gravitational potentials generated by a massive body
rotating steadily around an axis of rotation.

The plan of the paper is as follows: In Section 2 we obtain briefly, in
parallel to the cited previous work, the equations of orbital motions in
fourth approximation for stationary fields and then, to obtain first integrals
of these equations in Section 3, suppose the generating body of the field
has as axis of symmetry its axis of rotation. To obtain the equations for the
trajectories we assume that the body has as a plane of symmetry the plane
of its equator. Finally, using the canonical formulation, in Section 4 we
obtain the fourth-order contributions corresponding to the mentioned
potentials of rotation.

2. THE ORBITAL EQUATIONS

For details of Synge’s method the reader is referred to Synge (1970).
The general equations of motion in fourth approximation are

Tf‘,,”+:<‘1§;,“b”=0 (1)

where T° is the energy tensor and ?“b is the truncated Einstein tensor

corresponding to this approximation. In general ?“b is defined by
G*=G"~La ¥
m

where L, is the linear part of the Einstein terisor G*° for the metric v,

corresponding to the mth approximation. If we assume that the field is
weak, that is,

T = O(k?), T = 0(k'?), T* = 0(k) (3)

where k is the basis of the approximation, we have

§Gb=§jf+o(km+l) (4)

so that G can be calculated using the metric corresponding to the (n—1)

approximation.
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In our case, the metric in second approximation is given by (Synge,
1970)

gab:6ab+7ab (5)
2 2
where
Yap =2(V~Kyp+ V)8, +4K 5+ E,s + O(K>) (6)
2
Yas=4i(W,+F,)+0(k"?) (7
2
Yaa= —2AV+K,,— VI+ 0k (8)
2
and
V=—~RT*=0(k) 9)
W, = —iRT** = O(k*?) (10)
K,,=RT* = O(k?) (11)
E.,=-(1/7)R(V,V,+2VV )= 0(k%) (12)
F,=—(i/4m)R[-3V V42U (V. W, -V W)
+2i(W, OV-VOW,)=0(k? (13)
where
Rf(x, t)= Jf(x’, t—|x—x)x—x]7" dsx’ (14)
If the second term of (1) is written in the form
X, = A,p, T?"+ B, T+ C, T*+ O(K") (15)
Xo= Aup, T+ Bups T+ G T+ O(K”) (16)

then, with the aid of the value for g}"b (see McCrea, 1981), by a straight-

forward calculation and taking into account (2) we have (Gambi et al, 1987)
AB}’-V = (—4 V—ak,, - V- 2N),73ﬁ;t - ( V,,u - Kﬂm#)‘sﬁv

—34Kg,+ Eg,) , — (4Kp, + Eg,) ,+ O(K?) (17)
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Bupa= —4Vidus —4K,0abup—(V?) 48,8
—2Nabup —4i(Wp, — W)~ 4K, 54
=8iV(Wp,, — Wop) = ELpa—8iW,V,
+4i(Fa, ~F, )+ O(K"?)

O
I

~V,+4VV, ~3iW, ,~4VK,,,
+4K,.V, - 8iVW, ,—12V?V
+E Vs =4iW,V,—4iF, . ~4(W2),
+H{R[-2%"'W, W, , =2z "'V, W,,
—4TYK,,, —4VT"" = (27) " (V,)?
+t# 'V, K +(4m) VL E,,
— 7 WV o — 7 VK 0 +4THV?
~(47) WVE,, 0+ 2m) T VVL]) L+ O(K?
Asgy = Vabp, —4iW5, +4VV.85,
+8i( WV, — VW,,) —4iV, W, 8,
~2Kgya+3Epys— Koga—4iFs,+ O(K?),
Bipa=(-V>+4K,, ~2N+VE, +8W.-4VK, +8V’) 4
+16 W, (W0 = Wap) +8iVaWp
~ 7 H{R[2AW,,)+ Vel Kpo = 2K
~6iW, o ~3E,.,+3E,..)
+O V&K, -2V —3E,,)— X V.)*
-6W,,W,,—167T*(X,,~ V?)
~ Vo (2K,, +3E,,)
V(@4 Vtd4K,ont Epprs

+3(Vo)?+167T" ")} s+ O(K"'?)

(18)

(19)

(20)

(21)



Fourth-Order Orbital Equations 111

Ca=~V +3K,,4s—2VV,~2N,+4iV, W,
+2VIV,—32W, W, ,+4iV F, +4iW,K,, .
+(VE,;) 4+ 2(VK,,) s~ 8iVV W,
—i[-12(W2)  +6(VK,,) ,~6(V?),

+ 7 Y R{AW, ) —4W, W,
—127T*(K,, — V)=V (—4iW,,

+ Koo+ 2K, ~3E, 0 +3E,,.)
+V[120T =3V~ 3Kps00 = 3Eon
—HV Y1+ Vo K, +iV, E,,

—~OV(4K,, —2V*=3E,)}) 1+ O(K?) (22)
with the potential N in the expressions (17), (18), (21), and (22) given by
N=R(pV)=J(VOV)=0(K?» (23)

Now, adopting the Eulerian formalism for the first term of (1),
T°® = pu,ug — S,g, T = ipu,, T*=-p<0 (24)

where p, S,5, and u, are the density, stress, and 3-velocity of the material
system, respectively, from (17)-(22) we have

pl+u (p+p0)~S,,,=pV, +Y,+ Y, +O0(K° (25)

p+pb=—pV,+Z+2Z,+0(K'"? (26)
where

Y, =(pu’=80y) V. — Mpu,u, ~ S,,) V.,
tapug(W, s~ W5 .~ 8,5V,)
+pD, (-2V+ K, ,)+4pW, (27)
Y, =~(pu"~S,.)K,,,
+(pugu, ~ Sp, (2K, +3Es,)
—2(2Kg, +t3Ep,) ,+8,5(4K,, — V' =2N) ]
Toug[{81(Wp ., = W, 5) V+ W,V 1-4(F, , — F, 4)
—2(2K, +%EH5)V, +8,5(4K,,~ V= 2N) .}
+pD, [4(Wo+ V) + ] —-4pV(K,,, +2W, )
-pV, (4K, + E,..)+4pF, +4pW,V, (28)
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with
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Z,= ~(pu*—S,,) V., — 4 Wy ,(pugu, — Sz, )

+ pugDg(4K,, — V> —=2N)

+pD,(3K,, — N—=V?)—4pV, W, (29)
Zy=—4pu— 8, ) (Vo W+ V+V,+iK,, )

+2(pugu, — S, )[HWpV, — VWs,,

_%Eﬁw _2FB,7]

+ pug[16 W, (W o~ W, 5) +8V, Wy)]

+pugDs(VE,, +8 W3 —4VK,, +8V°~ B)

+pD€+pVD,(10V*+E,,—4K,,)

+p‘{,(EUG—4KUU)

—2p(2V F,+4W, W, +2W,K,,,~4VV W,) (30)

4 =R[-20" MW, ,W,,)—2in"'V,W,,+4pK,,

—4VT = 2m) (V) + 7' Vo K,

+(4m) Vo Epy— ' V=7 VK0

—(47) \VE,, 0o+ 2m) VYV, —4p V7 (31)
B =7"'R[2AW, )+ V(Ko +2K,,,—6iW,,

~%Emot3E00.)

+0V@AK,,—2V*—1E,.)—5W, W, —3(V,)}

+16p(K,, — VI)+ V,, (2K, +3E,,)

—V(4V 44+ 4K gy ot Eoy e +3(V,,) 2 +167T77] (32)
C=n"'R{2(W,,)~4W, W, +12pm(K,,— V°)

+V,—4iW, .+ K,, . +2K,,,~3E,.o t3E.o.,

+ V[-127T% =3V —3K 00 = 3Bv0n =5 Vo)

+ Vo, Koy +iV Eo

+0V(4K,, -2V’ —3E,,)} (33)

Finally, if we consider in (25) and (26) the motion of two bodies with
one of them very small with respect to the other and this last in steady
motion, so that all the potentials are time-independent, we can ignore the
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self-potentials and stress in the small body, and then, from (25)-(33), we
have
u,=V,—-4V_ uu

WY TTRTTY

+V,u’-4vy,

+ Koo, —4Wg  us +4W, sug

— Koo' +2Kg,  ugt, +3Eg,,  ugl,
+4V Wou, +4W, uzuu,

—4Kp, yUpthy — Eppu Uty

+8VW,, us —8VW, s —4F;  ug

+4F, qus +8W, Vou, —4VK,,,
-4K,.V,+12 & V.- E.,V,

+4 W), +277 ' R(W,  W,.)
+4R(VT??) . —4R(pKoso) .

~ 7 'R(V0Ko,) .= (4m) ' R(V.o, Eyy),
+7 ' R(VKr00) e
+(47) ' R(VE,, 0,) . — (2m) ' R(VVY,) ,
+4R(pV?) ,+O(K*) (34)

9

which are the orbital equations wanted. As can be seen, they are obtained
as a particular case of the general equations obtained in Gambi ef al. (1987)
and contain the ones used there to derive the cited contributions in static
weak fields [equations (110), (111), and (164), respectively, of Gambi et al.
(1987)]. On the other hand, from direct inspection it can be seen that
the 4-force on the small body is determined by the potentials V,
W,,K,.,E,..,F,,and N [defined in (9)-(13) and (23), respectively] gener-
ated by the massive body. From (3) it is clear that they are O(k), O(k*?),
O(k*), O(k?), O(k*?), and O(k?), respectively; furthermore, as the field
is stationary in this case, they are all instantaneous.

Among the diverse models of stationary weak fields there are two of
interest. On one hand there are the gravitational fields generated by con-
tinuum bodies at rest, and on the other hand we have the fields generated
by continuum bodies in steady motion, which obviously are more general
because the first are not only stationary, but also static. From these last
ones the most interesting case corresponds to that in which there is an axis
of symmetry around which the body is rotating steadily. Now, as the
potentials (9)~(13) and (23) which determine the motion of the material
system by means of the general equations (25)-(26) also determine the
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gravitational field generated by the system, we can obtain the form of the
field when this system is constituted by the two bodies described previously,
in such a way that their motion is governed by equations (34), so that the
field for the case in which the massive body has an axis of symmetry appears
as a particular case. In fact, in accord with Synge’s method (Synge, 1970),
if the system moves according to equations (25)-(26), then we have for this

Gambi, San Miguel, and Vicente

approximation
Vi =2 (kT + G*)
3
Vha=—2 T+ G*)
3
vi=—2J(kT*+ <2§44)
3

where

Now, eliminating in ?“b all the terms of O(k?), O(k’’?), and O(k®)

in é“”, GA’”, and é‘“, respectively, we have after a straightforward and
3 3 3

¥ =YVa—30mYee and J=—(4m)"'R
3 3 3

tedious calculation

}Y,U.V = 2( V_ KO'O')6VV +4Kp.v
3

+a  RI=(Vu V) =8, (Vo) =2(VV,,) = 8,,(VOYV)
(VKoo VKoo ) +28,,(VaKooa)

+V (—4K, o +2K,, 0+ 2K, ) F AW, W, )
AW, oW, ) +2iVA(W, + W, )—i(V,W,,)

=28, (Vi) +8(W, W, ,.,) =38,,( VKoo 0a)
+38,,(VaaKoo) =28, Voo Koo) +4(VIK,,)

+2i(V, W, + V, W) -2(K,, O V)+38,.(VOK,,)
+2V(Koprot Kovpo = Kpvoo = Koo pr)

A2V, Koo+ Voo Ko — Vo Koo) =28, V(V,)?
—2iV(W,at W, 0) —4W (W, + W, ,.)
+4W,OW,+W,OW,)+35,.(K,, DV)+2(VV, V,)
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~4(V?*V,) = (Vo E,..,) ~¥V,Ep.,+ V,E,,)

+3Vo(BoovF Eupu) =38u0(Voa Bga) =2V, Boo)

+3(Viuo Eve) +H Vo Eo) ~5(E,, V)

~18,(Eoo OV)+3V(E oot Evoon = Evo )

—48,, (W, Wy 00) =28, V(Ko a) +48,, (W, W, )

+2i8,, V(Wi 0a) 28, (V?V 00) +248,.(VauEso)

~3V(2E. 0,00 = Evo,ua) .= 8,,( V2O V)]+ O(K*) (38)
;m=4iWu =377V, V,)

+a 'R[2i(V, W, .~ W,V, ) +2i(W, V-VOW,)

T4 W, Vs~ VW, 00) +(K, Vet Ko 2V,

+2i(W, OK,, +3K,, +3K,, OW,)-4i O(K,,W,)
+4iK, o W, o = 2i(K,y Wo) o —2(VK, ) 14
+4i(K, Wy = WK, ) o+ 2 W, W,) Lt AW, W, )
—~H{VuHat Vot VoH, ) —(W, OH-HOW,)
—3i(WouH,— H,,W,)+3(Q, 0V-v0Q,)
+30(Q0, Vo= Vi Q) +4iVV (W, = W, )
+8iV(VOW, — W, OV)+2iV, 2V, W, -3V, W,)
+8(VV, V,+iVV,, W)+ O(K*?) (39)

Yaa =2V 2K, +2V ~8W2 -4V +4 VK,
3
+ 7T_IR[2( ‘/:O'VKO‘V) _'4( Wa‘,u Wu,a') *41( ‘/,o- Wo-,A)

+8m(pK,,) —8m(VT?") ~(V,)?+%(V,,E,,)
- 2( VV,44) - 2( VKUV,UV) - %( VEo'V,crv) + ( VV,ZG)

—8m(pV?)]+ O(K*) (40)
where
H=4V*+(Q2m) 'R(V,V,) (41)
Q, =3ir 'R(V,V,)

+27 ' R(V, W, .~ V,, W, - VOW,+ W, 0V) (42)
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and therefore the field is given by

8ab = Bab + Yab (43)
3

so that the field equations are satisfied with an error O(k’). Obviously the
metric (43) is simpler if the field is stationary, because all the terms in
(38)-(40) are independent of x, in this case. If, in particular, the field is
generated by a body with an axis of symmetry about which it is rotating,
we have even another simplification, because assuming the axis of symmetry
is the axis Ox; (which obviously is not an essential restriction), the following
conditions are satisfied in this case:

pzp(rs X3), S[.LV=S,LLV(r’ X3)=0(K2)

u u .
u1=—;x2, u2=7x1, uy; =0, U=, u=u(r,x;) (44)

where u’=u?+u? and r’ = ri+r3. In the next section we shall obtain first
integrals of equations (34), but, since for the integral of energy we only
need the field to be stationary, we shall use (43) taking into account only
the fact that all the components are independent of x,. The integral of
angular momentum requires that the field have an axis of symmetry, and
so, to obtain it, we shall use the conditions (44).

3. FIRST INTEGRALS AND TRAJECTORIES

To obtain first integrals of equations (34) let us first consider the field
components (38)-(40) when the field is stationary. In general the Lagrangian
L of a test particle is given by

L= (=g %X, = 2ig,s%, — gas) ' (45)
so that for its motion we have the equation:
L 3L
;t -5;: —:TM =0 (46)
or, equivalently, , ‘
E,4TH %, =Ax,,  Th%,%, =ik (47)

where A is a Lagrange multiplier, %, = u, = O(K"?) as before, and I'},,, are
the Christoftel symbols of the second kind for the metric g,.
As the first three equations are equivalent to

i, +Thgugug +2iT % u, — Ty = Au, (48)
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then, if the field is stationary, we have

8 =18"(8av p8poa — Bap.o) T38" (8uspt 8asn)
b= %g#o(g‘w,a - gm,a) +%“4ga4.a (49)
:’1,"4 = _%g“c’géhi,o'

so that, carrying (49) to (48), we have

Uy 38" (Qacp T Bpoa — 8apoor)
+38" (8aap T Basa) Ualty
+2i 38" (8400~ Bac,o)
38" s 0t T38" gus o = A, (50)

Now, if we suppose that the metric is (43), then, from (49), we have

d;.L + %I)/&M,M —%’YS;L 744,6 + %Fy;;.a"yo"q Y44,n
3 3 3 3 3 3
1
+§( ’Vau,ﬁ + Yoo ™ Yepu + YueYap.e
3 3 3 3 3
- y{}’p. Yao,8 ~ You yBU,D)uallB
3 3 3 3
+ i("/‘l‘u,,a - YQ4,y - )y,ua'ﬂy4o',,u.
3 3 3 3
_yu4y44,a+yMEYa4,s)ua :)‘un (51)
3 3 3 3
so that, going back to the fourth equation {47), ws have
4 £
FaB = %g4 (gas,B + ng,a - gaB,.?)
+38*(8aap T L4p.0)
4 £
roz4 = 'llgd (gm—:,a - gAmE) + %g44g44,a
= "%g4ag44,a (52)
and so
%g‘tv(gao‘,ﬁ + gB(r,a - gaB,U)
+ %g“"(gda,,@ + g4B‘a)uauB
+ 2l : %g4q(g4<r,a - g4a,a) + %g44g44,a Uy

+38% g4, = iA (53)
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so that
%(‘740')(7010',[3 + YBo,a yaﬁ,a')
3 3 3 3
+%(1 - 744)(74a,ﬁ + 74B,a)”auﬁ
3 3 3
+ 2l ' %(_740‘)(740,0( - 74(1,0') +%(1 - 744) 744,0{ Uy
3 3 3 303
+%(_')’4cr)(’)’44,o) =iA (54)
3 3
with which, from (51) and (54), we have
. 1
i, +§( Yau,s + YBu,« + Yapu ™ YucYao,8 ™ YuoYpo,a + 'y#o"YaB,cr)
3 3 3 33 3 3 3003
- %( 74# y4a,B + '}’4,; 74B,a ) uauB
3003 33
+ i(’y4,u,oz - ‘y4a,,u~ - ’)/p,a"yétcr,a + F)/,u.a"ylia,o' - ‘Yp.4‘)/44,a)ua
3 3 303 303 3 03
F3(Yasp = Yoy )
3 303
= VaspUply — VaaYasaUally — iVas gUsUgl,
3 303 3
+31V40 Yaa,oth + O(K®) (55)
303

From these equations it can be seen that if (43) is substituted in (55),
having eliminated in (38)-(40) all the terms that are taken as derivatives
with respect to x,, then we obtain equations (34). Thus, it is clear that if
the field (43) is stationary, we have

L-%,0L/9%x=1+E (56)
or, which is the same,
L™ (—gua%, +8u)—1=E (57)
where L is the Lagrangian associated with the metric (43),

L=1—(u"+ 'y#,,uﬂu,,+2iyﬂ4uﬂ—y44)'/2 (58)
3 3 3
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Now, since from (58) we have
L7 =1+5(w?+ v, 1, + 20Y,44, = Yas)
3 3 3
+ 3w+ i+ 20ty uu, +4iuzzﬂ4uu —2u23/44
3 3
- 2744‘)’“,/”“”1/ - 41")/“4744.4#)
3 3 3 3
+%(u6—-3u4y44+3u2'y§4—734)—1— O(KA) (59)
3 3 3
then from (57) and (59) we have
E = L_l(‘igu4x“ + g44) - 1
= [{[1 +%(u2+ Y Ut + 21’7“4“# - 744)
3 3 3
FHuUt it 20y T 2UTY oty iy g, — 20 e
3 3 3 3 3
- ZY44yyvuuuv - 4i'Yu4')'44up,)
3 3 3 3
+T56(u6 - 3“4744+ 3112724‘ 734)]
3 3 3
X[1= 4= iy,au, )} — 1+ O(K?) (60)
3 3
so that from (38)-(40) we finally have

E=%’-V-K,,+3E*+5V*+6EV+2EK,, +6VK,,
~9VE?~18EV?*—2E° - 14V’ —4W2 -8W, u,(E+ V)
+3(4K,, +E, ) uu, + 4+ O(K* (61)

where

-~

d==27"R(W,,W,,)+4R(pK,,) —4R(VT’)
+7 'R(V,,K,,)+(4m) 'R(V,.E,,)
— 7 'R(VK,,.,) ~(47m)'R(VE,, )
+(27) 'R(VVE,)~4R(pV?) (62)

Equation (61) is the integral of energy of equations (34) when the field (43)
is stationary. It has been obtained with an error O(K*) and contains the
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integral of energy both in the lower approximations and in the static case
(Gambi, 1985; Gambi et al., 1987).

To obtain the integral of angular momentum, we have to add the
hypothesis (44). If Ox; is the axis of symmetry, we have

X\ X =—A (63)

or, which is the same,
Lﬂ[x]gz“x” — X281, %, T i(X1824— X2814)] = A (64)
Now, taking into account (51), we have
L= 1+%(u2+2u2V—8Wﬂuﬂ.—2V+2Kw—2V2)
+3(u'+4V2+4u*V)+ O(K?) (65)

and

X182u%u — X281, %, + 1(X, 824 — X2814)
=(1+2V—2K,, +2 V) (x,u,— x,u;)
+4(x, Koy, — %, K4, )+ (X1 Bz, —x,Ey u,,)
+4(x, W, — x, Wa) + 4(x, F; — x, F>) + O(K7"?) (66)
so that, from (64)-(66), we have
A=(1 +3V-I-%VZ—KW+%uz+%qu—4Wuuli +3u*) X (XU — XoUy)
+(4+4V+2uP)(x, W, — x, Ws)
+4(x, Ky u, — %Ky ,u,)+(x By, — X, By u,,)
+4(x,F,—x,F,)+ O(K""?) (67)
If the field is stationary, then, using (38)-(44), we have from (67)
A=(1+3V+3V - K, +3u’+u’V
—4W,u, +3u®)(x,u, — xu;)
+(4+4V+2u”)(xu, — x,u,) + RY u
+4(x,F, —x,F)+ O(K""?) (68)

where ¥, =¥,(r%, x;) is the antisymmetric function of the general des-
composition

ZUZWIEU+\PU(r2; X3)X:;, (1,j=1,2)
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for the tensor X; = 4K+ E;. But, since from (61) we have

u=2E+V)+2K,, —10V*=3E°—12VE+ O(K?) (69)
then from (68) we have, using cylindrical coordinates,

A=(1+4V+E+8V’+4EV—-4W, u, +¥)R’®
+4(x,F, —x, F,) + O(K"'?) (70)

so that, setting h = A~ AE, we finally have

h=(14+4V+8V*—E’>—4W,u, —4W,u,+¥,)R*d
+4(1+2V)(x, W, — x, Wo) +4(x, F, — x, F,) + O(K %) (71)
which is the desired integral of angular momentum. As the integral of
energy, it corresponds to the fourth approximation, that is, it has been
obtained with an error O(K /%) and also contains both those for the lower
approximations and for the static case (Gambi, 1985; Gambi et al, 1987).
Now, if the massive body has an equatorial plane of symmetry, then,

putting £ =1/r and using polar coordinates in this plane, from (61) and
(71) we have

&) (%)
gdt) £\ dr
=2E+V)—10V>+2K,, —12EV+28V*+18E*V

—12VK,,+36EV’—4EK,_,—3E*+4E*-2(E+ V)V,
+8WLAH16(E + V(W u, + Wou,) — o + O(K*) (72)

E=§2[{h[1—4v+8V2+ EX+4(Wyu, + Wou,) ~¥,]

+4(x, Wo—x, W1 =2V)+4(x, F,— x,F))+ O(K"*)}]  (73)

and from (72) and (73) we have

AN
( dq)) = —F(¢) (74)
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where
F(&)=&~h [2(E+V)+6V*+2K,,+4EV-3E*-12V*+12VK,,

+100EV?+2(E+ V)V, —6E*V+4E*
—16h"(E+ V)(x, W, —x, W,) + 8 W?2
+24h 7 E*(x, Wy — x, W) —24h 'K, (x, W, — x, W)
—208h 7' V(E + V) (x, W, — x, W,)
+96h 2 (E+ V)(x, W, — x, W,)?
—16h"Y(E+ V)(x,F, — x,F,) — A ]+ O(K?) (75)

so that (74) is the equation for the trajectories on the equatorial plane for
the stationary case. It contains those corresponding to the static case because
the new potentials W,, W,, F;, and F,, which are associated with the
rotation of the massive body, appear in this case. The contributions of the
other potentials were already derived (Gambi et al, 1987) and now are
going to derive the corresponding potentials associated with the rotation.
First, let us see the way these potentials work in the former approximation.
Then, dropping from (74) all the terms that are O(K?), we have

(ﬁé) +£=h[2(E+V)+2P-2Q+6V*+4EV —3E]

dd
—h[16(E + V)(x, W, —x, W;)]O(K?) (76)
where
P=%K]SUG=—J S, (X)X —%| " d,x (77)
Q = ikJ (puu,) = —J pu | % — x| dix’ (78)

Since far from the massive body we have

V=mé¢, P =p¢, Q=g (x, Wz"xzwx):%hf (79)

where
m= 0(K), p=0(K?), g=0(K?), J;=0(K"?)  (80)

with J; the x; component of the angular momentum of the body, then from
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(76) we have

(?‘%): E=hQmé+2pé+6m’*+4mEE+2E —3E?)
—h P (8EJ,£+8mJ;£°) + O(K?) (81)

that is to say, after derivation,
d’¢
do?
=h(m+p—q+2mE—4h""EJ,)+ O(K?) (82)

+£(1—-6m*h™?+8mJsh

so that the integral of (82) is
f_m+p—q+2m]5—4h“lEJ3
T R(1-6m*h 2+ 8mJsh )
_ 2p201 2p-2 4 h~3 1/2
x[1+(1+(2E 3E*)h*(1-6m>h _18mJ32 ))
(m+p—qg+2mE—4h™'EJ;)
x cos[®(1—6m*h > +8mJ,h ) V2] (83)

As can be seen from this solution, the terms m and h’ appear
supplemented by p, g, 2mE, 4h"'EJ;, and 6m?, 8mJ;h ™" in the first factor,
and the terms 2Eh*/m® and cos ® are supplemented by

(- - - =3EX)Rh(- - - —6m’h*+8mJ,h )
(- -+p—q+2mE —4h"'EJ;)’

and
cos ®(- - - —6m*h~*+8mJ;h)?

respectively. Also it may be observed that the relations between the
relativistic terms are maintained as in the classical equations. In fact,
equations (83) correspond to a quasiconic whose semi-latus rectum ! is
given by

_ h*(1-6m’h *+8mJ;h )

I= 84
m+p—q+2mE ~4h™'EJ; (84)
and whose eccentricity is
_ 2y p201 242 —3\ 1/2
e=l+<2E 3EX)h (1—6m°h +‘8mJ3l; ) (85)
(m+p—q+2mE —4h'EJ,)

Since this eccentricity is greater, equal to, or less than one if the terms
between parentheses in (85) are greater, equal to, or less than zero,
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respectively, it is clear that this fact only depends on the value taken by
the factor E —3/2E?, which is the total energy of the particle, because if
we taken into account that

E=(0Gu?-V)— K, +3u*+3u* +3*V+iVi+ O(K?) (86)
then, from (61) we have
E-3E*=32(1+6V)-V-V?-K,, (87)

for this approximation. Therefore, the trajectories are of elliptic, parabolic,
or hyperbolic type if E—3E? is less than, equal to, or greater than zero,
respectively, and so the higher order corrections do not modify essentially
this classification.

4. CONTRIBUTIONS DUE TO ROTATION

Since, in accord with (58), in the stationary gravitational models we
are considering the Lagrangian is given by

L=—[1-Q2V+u)+(2V’ -2V’ +8W,u, —2K,,)
+(—4V3 =2V +4VK, +2K,  u’—8W?2
—3, .1, +8F,u, +25)+O(K*]"? (88)

then for this approximation we have

2 VZ u4
L=-1+ V+u?—~—2—+%Vu2—4WMuM + Koot
V3V — K,V - 3K, = SVW,u, +4 W

6
u

+1S o u, + VUt =20 W,u, —4F,u, —”{HT@ (89)

so that for the generalized momentum P, we have
Po = U, +3Vu, —4W, +3u*u, +3V?u, - K, u,
—4VW,+Z u, +Ivutu, —4 W, u,u, — 20 W,
—4F, +2u’u, (90)

and for the Hamiltonian H we have

2

u
H=1+—~ VA3V = Ko +3Vi’ — 31K 0’ +5V2u°
33 atit, —dWo +3ut + VK, +5 Vu*=3V?

o 5
+.sz.€—4u2WHuH+E u® (91)
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But, taking into account that
Uo =P, =3 VP +4W, —1p’p +3V?p, +3Vp’p, —8VW,
+Ko-o-pa+%p4pa ‘4P2Wa+4W;;P;LPa "E;Lapy+4Fo (92)

then, from (91) and (92), we finally have

2 4

H:ﬁ%— V=2Vp +4W,p, —%+%V2—KW

+3VIPP +3 VP  ~8VWop, +1Koop” ~ 32 uaPyiPe
+4F, a+4Wi+i-lgp6+ VK,, —3V*+d +O(K*) (93)
so that the Hamilton-Jacobi equation, which in this case is
H(x,,3S/9x,)=E (94)
has the following form:

E=3p*~V(1+3V+6V?*-2K,, ~16EV-2E?)
~ Koo t4Wo+d —35,,p,p,

+4[(1-F) W, + F,]p. + O(K?) (95)
as can be seen if (93) and the fact that
PP=V+3V+4EV+IE+K,, +4W,p, + O(K?) (96)

are taken into account.
Now, let us suppose that the field is generated by a massive body in
steady rotation as described before and that the particle is in the plane of

its equator. Since in spherical coordinates

S 148
oS, _1aS

= = =0 97
ars o] raq)’ p@ ( )

pPr

and since the only nonnull components of % ,,p,p, in (95) are

Spip+2Z 00t 2npaps (98)

with p,=cos ® p, —sin ® pg, and p,=sin ® p,+cos ® py, then if we take
into account that

3=V, + W, cos’®, 2, =T, +V¥,rsin’P

(99)
2]2 = 221 = %\Pzrz sin 2¢
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we have »
S by = (¥ +W,r7)pl+ ¥, pl, (100)

On the other hand, since far from the massive body we have (79), then

W, = W, cos ® sin 8+ W, sin ® sin 6+ W, cos =0
1

We=—W,sin ®d+ chosCD=FJ3
r

We=—W, cos ® cos 8~ W, sin ® cos 8+ W;sin §=0 (101)

and
F, =J(f.)= ! f f.(X') d:X b olta log r) (102)
——{f—+ O(r*logr) (102"
where

f=Qa) UV, W,,— V., W,)+(W,AV-VA UM

and F,=F,, F; =0, and Fy =0, so that, taking into account (97), (100), and
(101), from (95) we finally have

[(aso> 1
"2\ ar r

S,
K00+4W¢+2&¢+4W¢(1—— v) (‘Z(;)

8S.\°
<a_q>0) ] - V(A+3V+6V2-2K, —16EV—2E?)

+4F< S)+(xp +r2‘l'2)( S) +Lw, (as°> +O(K*  (103)
r? vd

where S, =S+ Et.
Now, writing S, in the form

So(r, @) = S,(r) + So(P) (104)
and taking into account that ® is a cyclic variable, we have
38,/ =ps=h (105)

so that (103) is equivalent to

h2
E=§<p3+—2>~V(1+3V+6V2—2KW—1615V—252)
r
.- 11 _\1h
~ Ko +4Wo+ 23 +4| Wl 1-—V ) |=+4Fp,

(W + PPV, p +— B+ O(K?) (106)
r
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But, since in the lowest approximation we have p, =[2(E + V)~ h*/r*]"/?,

then from (106) we have
p,=[215(1—\Ir,—»v2\1r2)+2V(1+3v+6v2—21<m,~1615V~2E2
2. 2 -~ 11 hz
-—‘I’l—r ‘P2)+2K(,¢—8W¢—4‘91~8W¢ 1—‘?‘/ ':2_
h2 1/2 h2
~8F,[2(E+ V)—?] —(1-2r2\1f2)7] (107)
so that, finally,

’ X N 11 _\h*
S, = 2E(1—‘If1—r\Ifz)—(l—Zrle)?—fich =S V)s

+2V(1+3V+6V>—2K, . ~16EV—-2E*~¥, - W) +2K,,
. 27Y1/2y 1/2
~8W§,—4y¢—8F,{{2(E+V)—~5} } dr (108)
¥
and

aS 1
t+T:£=J-A2(1~\P1_r2W2)_16V2“4EV

r

27 1/2
—4F[2AE+V)- 7} } dr (109)
aS 1 h 11 1

h Rz
—4F,F|:2(E+ V)—:z—:] } dr (110)

As can be seen in (108), the rotation manifests itself through the terms
—8Wo(1-3V)h/r, 8W5, —8F,[2(E+V)—-h*/r’]"?, and 87 'R(W,,),
which is in &. In order to obtain their contributions, we write (110) in the
form

P 231/2
®+a=—£J[Z(E+V+6V)——2] dr (111}

r

where

8V = 5V(stat)+5V(rol)+5V(ro[) (112)
3 2 3
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so that 6}/(5“") contains all the terms in (107) already considered in the

static case and 6¥“°‘) and SY“"” contain the terms associated with the

rotation of second and third order, respectively. Then, developing (112),
we have

271/2 291/2 29 -1/2
[2(E+V+5V)—72~] 2[2(E+V)—7] +55v[2(5+ V)——Z]
r

2

-3/2
—-;—(SV)’-[2(E+V)~7] +0[(86V)’] (113)

Now, since for an orbit of elliptic type with apsidal distances at r, and
r, we have the advance

P 271/2
A®=—25{J- [2(E+ V+5V)—‘r—2—:' dr (114)

n

then, writing A® in the form A®*Y + A®™" and taking into account (112)
and (113), from (114) we have

ey do

0

3 {1 [~ 1
APV = —— {— j 28V d P +—
ah\h)y ™72 ® h

+;l.1_ J‘Tf r4(6¥(rot))2[2(E + V)rz__hz]‘l d(b} + O[((SV)3] (115)

The advance A?(“") is known. In fact, taking into account (101), we

have )
5¥(rm):4hf3/r3 (116)
so that
o (1|7 hJ
A(D"°‘>=——(*J. 24——3d<13) 117
2 ah h 0 r r3 ( )
But, since in first approximation /= a(1 —e?), then we have
8aJsh 8mlsm
(rot) __ 3 — 3
A? aZ(l _eZ)Z a3/2(1 _e2)3/2 (118)

which corresponds to an an angular velocity of precession of the orbit given
by
4J,m*’?
0=—5(1-¢)" (119)

that is, the corresponding one to the Lense-Thirring effect of rotation.
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The perturbation 6§/(r°‘) is given by

h 2 WVD'WVO' -
6V"°‘)=44VW¢——8W§,+—J' oo &%
3 r 7)o |X—%

271/2
-8F,[2(E+ V}—;—z—] (120}
but because when r— o the integrand in (119) falls like [, then we have
2 WoeWoo ., 2 _ _
- J =g, X = J W, W, dx'+0(r?logr)
T ) |[X—X e 7 .
2W
=—+0(r"logr) (121)
r

so that, taking into account (101) and (102), we have
mlh _Ji AW F

5¥<'°‘)=22——r4——2;z+—2—r——8;5(2Er2+2mr—h2)1/2 (122)

and, therefore, carrying (121) to (115), we have
i{zzm%h—zﬁmzr
oh h’

Agﬂm”:— (1+ecos ®)’>dd

0

4 Whi~ F|7 h*
+———J (1+ecos ®)™! d(ID—S—J’ |:2E—-—2(1+ecosf-l>)'2
m m 0 h 0 m

1/2
+2h*(1+e cos @)“/zhz] d@} (123)

from which, taking into account (118), we finally have

8Jsm W Fe
A@(rot)=_~3______4_ 1- 2 —1/2_16
a1 - e2)3? m (1-e%) (1+&2)?

+w(1+ff>[ 8m ", 1073 :l (124)
2/ Lla(1-e)1? mla(1-e*)7

which is the value for the total advance.
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